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Abstract-The problem of laminar mixed (natural and forced) convective heat transfer from a straight 
isothermal tube of elliptic cross-section placed in a uniform stream is investigated. The free stream direction 
is horizontal and normal to the tube axis and the flow field is essentially two-dimensional. The investigation 
is based on a numerical solution of the conservation equations of mass, momentum, and energy. The 
resulting velocity and thermal fields both are found to be either steady or quasi-steady depending on vortex 
shedding. The parameters involved are the Reynolds number, Re, Grashof number, GP, Prandtl number, 
Pr, the tube geometry represented by its axis ratio (minor to major), A,, and its orientation represented by 
its angle of inclination, R. The study focuses on the effects of Re, Gr, and /z on the heat transfer process in 
the,Re range from 20 to 500, Gr range from 0 to 1.25 x lo6 and for angles of inclination varying from 0” to 
180”. The average Nusselt number is found to increase considerably with the increase of the ratio Gv/Re”. 
The response of the total rate of heat transfer to changes in the inclination angle is found to depend on the 
Reynolds number. The results also indicate that the increase of Gr for a given value of Re tends to suppress 
vortex shedding. The details of the velocity and thermal fields are presented in the form of isotherm and 

streamline patterns in addition to the surface vorticity and local Nusselt number distributions. 

1. INTRODUCTION 

HEAT transfer from elliptic cylinders has been the sub- 
ject of many experimental investigations because of its 
numerous engineering applications. Heat exchangers 
made of tubes of circular cross-section are commonly 
used in industry. However, flow over these tubes is 
not always perpendicular to the tube axis which makes 
the tube cross-section in the direction of flow to have 
an elliptic shape. In general, the elliptic tube geometry 
can represent the circular tube and can also represent 
a very thin plate depending on the value of the axis 
ratio. The overall heat transfer from an elliptic tube 
depends on its geometry (i.e. axis ratio, surface rough- 
ness, and angle of attack), the fluid properties, the 
approaching flow condition, and the tube surface tem- 
perature distribution. In general, various heat transfer 
modes may take place ranging from forced convection 
dominated regime to free convection dominated one. 
Combined (free and forced) heat transfer mode may 
also take place when inertia and*buoyancy forces are 
comparable. The local heat transfer features for an 
elliptic tube set normal to an approaching free stream 
differs considerably from that of a circular tube. The 
heat transfer characteristics are strongly influenced by 
the axis ratio, the angle of attack, and the Reynolds 
and Grashof numbers. 

The characteristics of steady asymmetrical flow 
over cylinders in the absence of buoyancy forces was 
the subject of many theoretical studies. The problem 
of 2-D flow past an elliptic cylinder at different angles 
of attack was investigated theoretically in the low 

Reynolds number range by many researchers [l-6]. 
Several researchers have investigated both exper- 
imentally and theoretically the time development of 
the flow field adjacent to an elliptic cylinder starting 
its motion from rest. This problem is of fundamental 
importance since the flow field is unsteady for a con- 
siderable range of Reynolds number due to vortex 
shedding. Various approaches have been utilized for 
tackling this problem. For example, Izumi et al. [7] 
used a discrete-vortex simulation model to predict the 
vortex formation in the wake. In this model, a number 
of vortices were introduced in the flow and then con- 
vected downstream in order to simulate the vortex 
shedding process. The same problem was studied by 
Daube et al. [8] for the case of an elliptic cylinder 
starting its motion impulsively in a fluid at rest. The 
analysis was based on a numerical integration of the 
unsteady Navier-Stokes equations using finite-differ- 
ences. Results were obtained for a Reynolds number 
of lo3 and for an angle of attack of 30” : however, 
neither steady nor quasi-steady flow fields were 
achieved. The case of a uniformly accelerated thin 
elliptic cylinder moving normal to its axis in a viscous 
fluid was studied by Tanahashi et al. [9] who solved 
the vorticity transport equation to simulate numeri- 
cally the initial stage of flow development near the 
cylinder. Results were obtained for the variation of 
the lift, drag, and moment coefficients during a short 
time period following the start of the cylinder motion. 
In their study, the angle of attack was varied from 15” 
to 90”, however, the only Reynolds number con- 
sidered was 98.11. 
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NOMENCLATURE 

4 axis ratio, b/a u, ?J velocities in x- and Y-directions, 
a, b semi-major and minor axes respectively 

focal distance 
& F, 

x, Y rectilinear coordinates 
functions defined in equation (7a) Z boundary-layer coordinate. 

9 gravitational acceleration 
G,, gn> G, functions defined in equation (7b) Greek symbols 
Gr Grashof number, gp( T, - Too) (2~) 3/v2 thermal diffusivity 
12 heat transfer coefficient ; coefficient of volumetric thermal 
H,,, h,, H, functions defined in equation (7~) expansion 
k fluid conductivity c vorticity 
NU local Nusselt number V? r elliptical coordinates 
NU average Nusselt number ;1 angle of inclination of the tube 
N% average Nusselt number for forced V kinematic viscosity 

convection P density 
P A uid pressure # dimensionless temperature 
Pe Peclet number, Re Pr Y stream function. 
Pi” Prandtl number, vjcr 
Re Reynolds number, Zu,c/v Subscripts 
t dimensionless time 0 at the surface 
T fluid temperature cc at infinite distance from the surface. 

Experimental investigations of the characteristics strong influence on the overall heat transfer rate. It 
of the flow field adjacent to an elliptic cylinder are 
numerous [lo-l 51. A good survey of the experimental 
work done on this problem up to 1987 is given in the 
paper by Ota et al. [ 161. In that paper, an experimental 
study was carried out on the problem of flow over an 
elliptic cylinder of axis ratio of 1 : 3 in the critical 
Reynolds number range of 3.5 x 104-1.25 x lo5 (based 
on the major axis length). The study revealed that the 
critical Reynolds number depends on the angle of 
attack and attains a minimum value when the angle is 
between 5” and 10”. It was also found that a small 
separation bubble exists near the leading edge in the 
critical Reynolds number regime. 

Although published research on convective heat 
transfer from elliptic cylinders shows a good number 
of experimental investigations, it is only limited to 
forced convection problems. To the best of the 
author’s knowledge, the first measurements of the 
local heat transfer coefficient were reported in 1953 
by Seban and Drake [17] and by Drake et al. [18] who 
conducted their experimental studies for cylinders of 
axis ratio 1 : 4 and 1 : 3, respectively. The study was 
limited to forced convection regime and small angles 
of attack (0”, 5”, and 6” only). In 1983, Ota et al. 
[19, 201 reported their experimental results on forced 
convection from elliptic cylinders of axis ratios of 1 : 2 
and 1 : 3 placed in a uniform stream in the Reynolds 
number range of 5 x 103-9 x IO4 and for angles of 
attack varying from 0” to 90”. The variation of the 
local heat transfer coefficient was found, as expected, 
to be quite different from that of a circular cylinder. 
In addition, the angle of attack was found to have a 

was also found that the angle of attack producing the 
minimum average heat transfer coefficient depends on 
the Reynolds number range. No attempt was made to 
study the effect of the interaction between buoyancy 
driven flow and forced flow on the overall heat trans- 
fer rate. 

Recently (1988) Nishiyama et al. [21, 221 published 
their findings on the problem of convective heat trans- 
fer from elliptic cylinders placed in tandem arrange- 
ments. The study is purely experimental and was con- 
ducted once for two cylinders and again for four 
cylinders of axis ratio 1 : 2 in both cases. Local and 
average heat transfer characteristics were presented 
for various angles of attack ranging from 30” to 60” 
for the case of two cylinders and from 0” to 90” for 
the case of four cylinders. In their work they focused 
on forced convection regime only. Another recent 
work (1988) on this problem is that carried out by 
Ilgarubis et al. [23] who investigated the drag and 
heat transfer characteristics of compact bundles of 
elliptical finned tubes. They focused on the variation 
of the average heat-transfer coefficient from one row 
to another. The investigation covered the Reynolds 
number range from 4 x lo* to 4 x 10’. 

Theoretical studies of convective heat transfer from 
elliptic cylinders are very few and are all based on the 
solution of boundary-layer equations. The works by 
Eckert [24] and by Chao and Fagbenle [25] are mainly 
boundary-layer analyses for the forced convection 
heat transfer problem. According to the boundary- 
layer approximations, their results are only applicable 
in the neighborhood of the leading edge where the 
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boundary-layer thickness is small. As the angle of 
attack increases, one would expect flow separation to 
occur earlier on the upper surface and accordingly the 
region of validity of the boundary-layer solution gets 
smaller. The only boundary-layer analysis of free con- 
vection from elliptic cylinders was reported by Merkin 
[26] who solved the boundary-layer equations for the 
case of buoyancy-driven flow over an elliptic cylinder 
for the two cases in which the major axis is either 
horizontal or vertical. Although it was pointed out 
that the boundary-layer model will not be appropriate 
in the immediate vicinity of the top of the cylinder, the 
numerical integration continued, reaching that point 
because of the absence of flow separation. As a result, 
one may conclude that the boundary-layer model can- 
not be utilized to study the entire flow field in 
either case of forced or combined convection regimes 
since flow separation in most of these cases is 
unavoidable. 

According to the above literature review, it is clear 
that there no attempt has been made to tackle the 
problem of! combined (free and forced) convection 
heat transfer form an elliptic cylinder either theor- 
etically or experimentally. The only theoretical inves- 
tigation of the problem of forced convection is based 
on the solution of the boundary-layer equations which 
are valid only in the neighborhood of the leading edge. 
No attempt has been made to study the entire flow 
field based on the full conservation equations of mass, 
momentum and energy. This work aims to conduct a 
theoretical study of combined convection from an 
elliptic cylinder set normal to an approaching free 
stream at various angles of attack. The study is based 
on solving the conservation equations of mass, 
momentum (Navier-Stokes equations), and energy. 
Detailed analysis of the flow and thermal fields adjac- 
ent to the cylinder surface are carried out. The effects 
of Reynolds number, Grashof number, and the angle 
of attack on the local and average heat transfer 
coefficients are studied for cylinders of axis ratios 
A, = 0.6. 

2. PROBLEM STATEMENT AND GOVERNING 
EQUATIONS 

The problem considered is that of mixed (forced 
and natural) convection heat transfer from a straight 
tube of elliptic cross-section with 2a and 2b rep- 
resenting the major and minor axes, respectively. The 
tube, which has an isothermal outer surface of tem- 
perature T,, is placed horizontally normal to a uniform 
stream of velocity u, and temperature T,. The major 
axis of the tube cross-section may be horizontal or 
inclined at an angle ;1 as shown in Fig. 1. The Aow 
field is assumed laminar, two-dimensional (neglecting 
end effects) and unsteady. The flow unsteadiness arises 
essentially from vortex shedding. Applying the Bous- 
sinesq approximation and neglecting viscous dissi- 
pation, the governing equations of motion and energy 
can be expressed as : 

Gi” 

2Re2 [ 
cosiS +sinA* 

ax 1 aY ’ (1) 
r = V”ti, (9 

where c is the time, u and u are the velocity components 
in the X- and Y-directions, $ is the stream function, c 
is the vorticity, @ is the temperature, Gr is the Grashof 
number, Re is the Reynolds number, and Pr is the 
Prandtl number. All the above variables are dimen- 
sionless and related to the dimensional quantities by : 

t= ym$ +T-L 
Ts--Tm 

+-& 
co 

<= -5, 

where c = (a2-_ ) 2 ‘I2 is the focal distance and all the 
variables with primes are dimensional in addition to 
the temperature T. The Grashof and Reynolds num- 
bers are defined as : 

2u, c 
Re = ~ Gr = gP(2c13 (K - Tco) 

V V2 i 

where g is the gravitational acceleration, p is the 
coefficient of volumetric thermal expansion, and v is 
the kinematic viscosity. 

Since the elliptic coordinates (c$, r) are more appro- 
priate for use in the present problem, we now use the 
transformation : 

x = ccoshlcosy Y = csinhcsiny, 

with to = tanh-’ (A,) defining the outer surface of the 
tube. 

Using the above transformation, the governing 
equations (l-3) can be expressed as : 

(cash 5 sin q sin,% + sinh 5 cos y cos 2) 

- $ (cash < sin 71 cos A- sinh t cos y sin 1) 1 , (4) 

where 
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FIG. 1. The elliptic section geometry and the coordinate systems. 

v2 =$+$, H = ; (cash 25 - cos 2~) , 

and Pe = Re Pr is the Peclet number. 

The boundary conditions of the velocity field are 
mainly the no slip and impermeability conditions on 
the tube surface and the free stream conditions far 
away from it. These conditions can be expressed as : 

and : 

The thermal field boundary conditions are simply the 
constant temperature on the tube surface and the free 
stream temperature far away. These can be written 
as : 

3. THE METHOD OF SOLUTION 
In the present problem, the velocity and thermal 

fields may be unsteady due to the formation of vortices 
near the tube surface and its shedding downstream. 
Accordingly, the method of solution is constructed to 
solve the time dependent problem in order to predict 
the time variation of both velocity and thermal fields. 
The method is based on numerical integration of the 
governing equations (4)-(6) in space and time starting 
from certain initial conditions until eventually reach- 
ing a steady or quasi-steady state. The time devel- 
opment of the flow and thermal fields is carried out in 
two stages. In the first stage, the free stream is assumed 
to start suddenly from rest with no temperature 
difference between the tube surface and the approach- 
ing stream (i.e. in the absence of buoyancy forces). At 
the beginning of this stage, the boundary-layer region 

starts to form in the immediate neighborhood of the 
tube surface and then grows with time. Later on, when 
the boundary layer becomes thick enough, the tube 
temperature is suddenly and uniformly increased to 
T, allowing both thermal and velocity fields to develop 
simultaneously with time. The method is similar to 
that used by Badr [27]. In order to decrease the num- 
ber of independent variables the functions $, 5, and 4 
are approximated using Fourier series as follows : 

C =iGoCt,4+ 2 g,(~,t)sinny+G,(~,t)cosnvl, 
n= 1 

(7b) 

(7c) 

where N is the number of terms in the Fourier series. 
To obtain a separate equation for each of the func- 

tions Go, gn, and G,, we substitute the above 
expressions of +, 5, and C$ in equation (4) and, by 
using simple mathematical manipulation, we obtain : 

=Cl 1 dGz 
;cosh2c----= 

dt 2 at @a> 

$L 1 ag,n-2t 
cosh2tT - ?sgn(n-2) at 

1 G&*+2 - - __ 2 at 

@b) 
cosh2tp-- aG,‘t-z, aGn+z ~ ~ ~ n2 at + at + at I 
- ;e($n2G)+snz (W&), (8~) 

where 
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The above transformation is essential for obtaining 
accurate results at small times (for details see ref. 
[29]). After transforming all equations and boundary 
conditions to the new coordinate system, the numeri- 
cal solution is carried out closely following the same 
procedure used in refs. [29, 301 except for the 
additional coupling resulting from the terms 

in equations (Sa)-(8c) and also the terms 

in equations (lOa)-( 10~). To overcome this problem, 
these terms were first approximated and then cor- 
rected through an iterative type solution. It is impor- 
tant to mention that the boundary-layer coordinate z 
will continuously stretch with time when viewed in the 
physical coordinates. Such behavior matches closely 
the growth of the boundary-layer region and accord- 
ingly assists in obtaining a highly accurate solution. 

Staniforth [31] obtained an analytical solution for 
the governing equations [equations (4)-(5)] in the 
absence of buoyancy forces (Gr = 0) that is applicable 
at the start of the fluid motion (t = 0). Staniforth’s 
solution is used as an initial condition in order to start 
the numerical scheme. The expressions for $* and c* 
at t = 0 are given by : 

$* = e’osin(q-A) 

x z erf(wiL2z) + (134 

[* = 2e50 
*r’/2fpP sin (q-A) eeneUZ2, (13b) 

50 

where HsO = t (cash 2t, - cos 2~) 
In order to express the surface pressure variation 

and the local Nusselt number distribution in terms of 
the dimensionless variables used in this study, let us 
first introduce the dimensionless pressure p* defined 
as : 

One can apply the Navier-Stokes equations at the 
cylinder surface to obtain : 

By integrating the above expression w.r.t. q on the 
surface g = &,, we obtain: 

P *=_- 

%L Vsmny- Z(cos~~-cosnx . (14) 

The periodicity of p* requires that (~?G,/ac),~ must be 
zero at all times. This is implicitly satisfied by the 
integral conditions given in equation (12a). 

The local heat transfer coefficient h is defined as : 

where k is the fluid conductivity and Y is a linear 
coordinate normal to the tube surface. In terms of 
the elliptic coordinate 4, the above expression can be 
written as : 

We now define the local Nusselt number Nu as : 

2ah 
N”=k= - (15) 

and the average Nusselt number NU can be obtained 
from : 

Nu = ; 
L s Nuds, 
0 

where L is the elliptic section perimeter and ds is 
an elementary length along that perimeter. The final 
expression for NU is : 

(16) 

4. DISCUSSION OF RESULTS 

Before presenting results we will first discuss the 
accuracy of the method of solution and the numerical 
scheme used during the two stages of flow devel- 
opment. The test case for the first stage is to study 
the early stage of flow development over an elliptic 
cylinder started its motion impulsively from rest in a 
quiescent Auid. The cylinder has an axis ratio A, = 0.6 
and inclined at an angle 1 = 30” while the flow Reyn- 
olds number is 5000. This problem was solved ana- 
lytically by Staniforth [3 l] who obtained a series solu- 
tion (in boundary-layer coordinates) that is only valid 
for small times. Figure 2 shows a comparison between 
the surface vorticity distribution obtained using the 
present method and Staniforth’s analytical solution. 
The test case for the second stage is to study the forced 
convection from an elliptic cylinder of axis ratio close 
to unity (A, = 0.96) and compare with available data 
for the case of a circular cylinder. Table 1 shows 
a comparison between the present results and those 
obtained by Hatton et aE. [32], Collis and Williams 
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FIG. 2. Comparison between the obtained surface vorticity 
distribution and Staniforth’s analytical solution [3 13 for the 
case of Re = 5000, A, = 0.6, and ;1 = 30”. Present study: 
(---- ) t ‘+ 0.1 ; (. . . . .) t = 0.2 ; (----) t = 0.35 ; (-, ~. -) 
t = 0.5. Staniforth’s solution : A--t = 0.1 ; V--t = 0.2 ; 

r---t = 0.35. 

[331> and Dennis et al. [34]. The table shows a 
maximum difference of 7.2% with ref. [32], 8.7% with 
ref. [33], and 2.3% with ref. [34]. Part of these differ- 
ences are attributed to the difference in the cylinder 
geometry. 

The effect of Grashof number on the average Nus- 
selt number is investigated for a cylinder of axis ratio 
A, = 0.6 inclined at an angle ;1 = 30”. The inves- 
tigation covered Reynolds numbers ranging from 20 
to 500 and Grashof numbers ranging from 0 to 
1.25 x 106. Table 2 shows the steady or the time aver- ~__ 
age of the quasi-steady values of iVu and Nu/NGor 
every considered value of Gr (or Gv/Re’), where Nr.+ is 
the average Nusselt number for the forced convection 
regime (Gr = 0) _ The table shows the clear dependence 
of Nu/Nu, on the term Gr/Re2 with negligible depen- 
dence on Re. The term Gr/Re2 represents the ratio 
between buoyancy and inertia forces. An increase of 
Gr/Re’ from 0 to 5 causes about a 14% increase of ___ 
iVu/Nz+ in the entire range of Re considered. The 
graphical representation of the relation between 
Nu/Nz.+ and Gr/Re2 can be seen in Fig. 3. 

The effect of increasing GP on the local Nusselt 

Table 2. The effect of Grashof number on the average 
Nusselt number (A, = 0.6 and 1 = 30”) 

Re Gr/Re2 
-- 

Nu NuJNu, 

20 0.00 2.911 1 .ooo 
1.95 3.028 1.040 
3.90 3.247 1.115 
5.86 3.445 1.183 
9.76 3.757 1.291 

50 0.00 4.364 1 .ooo 
1.95 4.581 1.050 
3.90 4.919 1.127 
5.86 5.204 1.193 
9.76 5.649 1.295 

100 0.00 6.030 1.000 
1.95 6.380 1.058 
3.90 6.780 1.124 
5.86 7.120 1.181 
9.76 7.700 1.277 

200 0.00 8.890 1.000 
1.00 9.283 1.044 
2.00 9.401 1.057 
3.00 9.573 1.077 
5.00 10.055 1.131 

500 0.00 15.600 1.000 
1.00 16.230 1.040 
2.00 16.680 1.069 
3.00 16.800 1.077 
5.00 17.820 1.142 

number and surface vorticity distributions is shown 
in Fig. 4a and b for the case of 2 = 30” and Re = 20. 
Figure 4a shows a maximum local Nusselt number at 
v] = 180” and a minimum at q between 60” and 100”. 
Moreover, the increase of Gr causes NU to increase on 
the entire surface except for the region 60” < ye < 135” 
at which the effect is reversed. To understand this 
phenomenon, the surface vorticity distribution plotted 
in Fig. 4b shows that the absolute value of 5 increases 
with the increase of Gr over most of the tube surface, 
indicating a higher velocity gradient which is expected 
as a result of the increase in buoyancy forces. Such a 
velocity increase near the tube surface leads to an 
increase in the heat transfer rate. Figure 5a and b 
shows the local Nusselt number and vorticity vari- 
ations for the case of Re = 200. The region 
0 < y < 100” is characterized by vortex formation and 
shedding and the effect of such velocity field on Nu 
and [ can be seen in this figure. As a result, the flow 
and thermal fields continue to fluctuate and accord- 
ingly the NU and < distributions given in Fig. 5a and 

Table 1. Comparison between the obtained average Nusselt numbers for 
A,. = 0.96 and the results reported by Hatton et al. ]32], Collis and Williams 
[33], and Dennis et al. [34] for the case of forced convection from a circular 

cylinder 

Re 
NU (A, = 0.96) 
present study Ref. [32] 

Nu (A, = 1.0) 
Ref. 1331 Ref. [34] 

5 1.456 1.561 1.395 I .423 
20 2.550 2.548 2.396 2.557 
40 3.490 3.318 3.185 3.480 
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_- 

FIG. 3. The effect of increasing Gr/Re2 on the ratio Nu/Nu, 
for the case of A, = 0.6 and A = 30”. 

b are continuously changing with time. The figures 
represent the situation at t = 20. 

The effect of Gr on the streamline and isotherm 
patterns for the case of Re = 20 is shown in Figs. 6 
and 7 for Gr/Re* = 0 and 1.95 and in Figs. 8 and 9 for 
the case of Re = 200 and Gr/Re2 = 0 and 5. In the 
first case (Re = 20), both velocity and thermal fields 
reached steady state with no vortex shedding. Figure 
6a and b shows that the increase of Gr not only moves 
the rear stagnation point but also removes the sep- 
aration bubble behind the tube section. The effect of 
buoyancy forces on the shape of isotherm contours 
downstream of the tube is clearly shown in Fig. 7a 
and b. Figure 8a and b shows that vortex formation 
and shedding take place in the case of Re = 200. How- 
ever, it is clear that vortex formation is greatly sup- 
pressed as Gr increases. The effect of vortex shedding 
on the thermal field is shown in Fig. 9a where a lump 
of warm fluid is separated and convected downstream. 
Since the flow and thermal fields in this case 
(Re = 200) are continuously changing with time, the 
plotted streamline and isotherm patterns show only 
the situation at t = 20. 

The effect of the inclination angle J. on the rate of 
heat transfer is only studied for the cases of Re = 20 
and 200 when A, = 0.6 and Gr/Re’ = 2. The values of 
a considered vary between 0” and 150” with a step of 
30”. The case of /z = 180” was excluded since it is 
exactly the same as ;1 = 0. The numerical values of NU 
for everyone of the above cases are given in Table 3. 

These represent the final steady values for the case 
of Re = 20 and the time average for the case of 
Re = 200 because of the thermal field unsteadiness in 
the later. The table shows maximum heat transfer rate 
at it = 0” in the case of Re = 20 and at 1 = 60” in the 
case of Re = 200. The minimum value of Nu occurs 
at A = 90” in the case of Re = 20 and at A = 150” in the 
case of Re = 200. However, the maximum percentage 
change of NU due to changing the angle of inclination 
did not exceed 6.7% for the two cases considered. 

The time variation of NU following the sudden tem- 
perature increase is shown in Fig. 10a for the case of 
Re = 20 and in Fig. lob for the case of Re = 200. The 
angles of inclination considered are O”, 30”, 90”, and 
150” in each case. Although NU reached its final steady 
value in the first case (Re = 20), it continued to fluc- 
tuate in the second (Re = 200) because of vortex shed- 
ding. Moreover, the amplitude of oscillation of NU 
depends on L as can be seen in Fig. lob. As il 
approaches 90” the amplitude gets larger and vice 
versa. The effect of ;1 on the local Nusselt number 
distribution is shown in Fig. 1 la for the case of 
Re = 20 and in Fig. 1 lb for the case of Re = 200. 
Although the values of NU did not change much with 
the change in ;1, the local Nu distribution is greatly 
affected because of the considerable change in the 
velocity field. One should mention here that Fig. 1 la 
represents a steady thermal field while Fig. 1 lb rep- 
resents a quasi-steady field due to vortex shedding. 

The effect of/z on the streamline and isotherm pat- 
terns is shown in Figs. 12 and 13 for the case of 
Re = 200 and Gr = 8 x lo4 when R varies between 0” 
and 150”. Figure 12 shows the clear dependence of the 
size of the shedding vortices on the angle of inclination 
II. As a approaches 90” bigger vortices are formed and 
vice versa. This explains the higher fluctuations in 
the average Nusselt number when A = 90” that was 
pointed out earlier in Fig. 1 lb. 

5. CONCLUSIONS 
The problem of mixed convection from a straight 

isothermal elliptic tube is solved numerically in the 
Reynolds number range of 20-500 for Grashof num- 
bers ranging from 0 to 1.25 x lo6 and for angles of 
inclination ranging from 0” to 180”. The solution is 
based on a numerical integration of the conservation 
equations of mass, momentum, and energy with no 
boundary-layer approximations. The obtained vel- 
ocity and thermal fields are found to be either steady 
or quasi-steady depending on Reynolds and Grashof 
numbers. Vortex shedding causes unsteadiness in both 
flow and thermal fields. It is found that the increase 
of Gr for a given value of Re results in suppressing 
vortex formation and shedding. The average Nusselt 
number is found to increase considerably with the 
increase of the ratio Gr/Re2. The effect of the incli- 
nation angle on the rate of heat transfer is found not 
to exceed 6.7% for the range of variables considered. 
However, the fluctuations in the average Nusselt num- 
ber increase as it approaches 90”. The details of the 
velocity and thermal fields are presented in the form 
of isotherm and streamline patterns in addition to the 
surface vorticity and local Nusselt number distri- 
butions. It is hoped that this work represents a step 
forward towards the solution of the more difficult 
problem of forced (or mixed) convection from an 
inclined finite flat plate. 
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FIG. 4. The effect of increasing Grashof number on the local Nusselt number and surface vorticity 
distributions for the case of Re = 20 and ;I = 30” : (a) local Nusselt number; (b) surface vorticity : 
(- )-_Gr/Re* = 0; (- . . - -)-_Gr/Re’ = 1.95 ; (----)-Gr/Re’ = 3.90; (- - -)-Gr/ Re* = 

4 5.86 ; (-- .I- ..-)-Gr/Re” = 9.76. 
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Prcr. 5. The effect of increasing Grashof number on the local Nusselt number and surface vorticity 
distributions for the case of Re = 200, and 1 = 30”: (a) local Nusselt number; (b) surface vorticity : 
(- )-Gr/Re’ = 0 ; (- . - . -)-Gr/Re* = 1 .O; (-----)-Gr,/Re’ = 2.0 ; (--- ---)--GrJRe2 = 3.0; 

(-..-..-)--Gr/Re2 = 5.0. 
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FIG. 6. The streamline patterns for t.he case of Re = 20 and A = 30” : (a) Gu/Re2 = 0, (b) Cr/Re2 = 1.95. 
Streamlines plotted are 4’/ = -1.0, -0.8, -0.6(0.1), -0.2, -0.15, -0.1, -0.08 (O-02), -0.02, -0.01 

(O.Ol), 0.02, 0.04 (0.02), 0.1, 0.15, 0.2 (O.l), 0.6, 0.8, 1.0. 

n 
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(a) 

Ib) 

FIG. 7. The isotherm contours for the case of Re = 20 and /z = 30” : (a) Gr/Re’ = 0; (b) Gr/Re2 = 1.95. 
Isotherms plotted are C$ = 0.1, 0.2,. . . , 0.9. 
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(b) , 

FIG. 8. The streamline patterns for the case of Re = 200 and R = 30” at time f = 20: (a) Gr/Re’ = 0; 
(b) Gr/Re2 = 5.0. Streamlines plotted are the same as in Fig. 6. 
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(a) 

FE. 9. The isotherm contours for the case of Re = 200 and 2 = 30” at time t = 20 : (a) Gr/Re’ = 0 
(b) Gr/Re2 = 5.0. Isotherms plotted are the same as in Fig. 7. 
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Table 3. The effect of the inclination angle 
on the average Nusselt number for the two 
cases of Re = 20 and Re = 200 (A, = 0.6 

and Gr/Re2 = 2.0) 

Re /z 

200 

20 0” 
30” 
60” 
90” 

120” 
150” 

0” 
30” 
60” 
90” 

120” 
150” P 

NU 

3.14 
3.06 
2.96 
2.93 
2.96 
2.99 
9.32 
9.21. 
9.53 
9.51 
9.03 
8.89 

(b) 

I I 1 I I I 1 I 

0 4 8 12 16 20 24 28 

FIG. 10. The time variation of flu following the sudden temperature rise for various inclination angles A. : 
(a) Re = 20 and Gv/Re2 = 3.9 ; (b) Re = 200 and Gv/Re2 = 2.0 : ( ----_)_A = 0” ; (. _)-A = 30” ; 

(---->-a = 90” ; (- .-._ )-_n = 150”. 
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FIG. 11. The effect of the inclination angle /1. on the local Nusselt number distribution : (a) Re = 20 and 
Gr/Re2 = 3.9 at t = 15; (b) Re = 200 and GrJRe2 = 2.0 at t = 30: (- )-A = 0” ; (. . . . .)-A = 30” ; 

(___-)__n = 90” ; (- . ~. -)-_n = 150”. 
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FIG. 12. The effect of the inclination angle 1 on the streamline pattern for the case of Re = 200 and 
Gr/Re* = 2.0 : (a) ,I = 0” ; (b+;l = 30” ; (c) R = 60”; (d) ;I = 90” ; (e) A = 120”; and (f) ;1 = 150”. Streamlines 

plotted are the same as in Fig. 6. 
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(c) 

(d) 

FIG. 12-cmtinued. 
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FIG. 12-continued. 
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(a) 

(b) 

FIG. 13. The effect of the inclination angle ;1 on the isotherm contours for the case of Re = 200 and 
Gr/Re’ = 2.0 : (a) ;1 = 0” ; (b) R = 30” ; (c) I = 60” ; (d) ;I = 90” ; (e) A = 120” ; and (f) 1 = 150”. Isotherms 

plotted are the same as in Fig. 7. 
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(d) 

P 

FIG. 13-continues’. 
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